vec4.h
1 /*
2 ** ClanLib SDK
3 ** Copyright (c) 1997-2016 The ClanLib Team
4 **
5 ** This software is provided 'as-is', without any express or implied
6 ** warranty. In no event will the authors be held liable for any damages
7 ** arising from the use of this software.
8 **
9 ** Permission is granted to anyone to use this software for any purpose,
10 ** including commercial applications, and to alter it and redistribute it
11 ** freely, subject to the following restrictions:
12 **
13 ** 1. The origin of this software must not be misrepresented; you must not
14 ** claim that you wrote the original software. If you use this software
15 ** in a product, an acknowledgment in the product documentation would be
16 ** appreciated but is not required.
17 ** 2. Altered source versions must be plainly marked as such, and must not be
18 ** misrepresented as being the original software.
19 ** 3. This notice may not be removed or altered from any source distribution.
20 **
21 ** Note: Some of the libraries ClanLib may link to may have additional
22 ** requirements or restrictions.
23 **
24 ** File Author(s):
25 **
26 ** Magnus Norddahl
27 ** Mark Page
28 ** Harry Storbacka
29 */
30 
31 #pragma once
32 
33 #include <cmath>
34 #include "vec2.h"
35 #include "vec3.h"
36 
37 namespace clan
38 {
41 
42  template<typename Type>
43  class Vec2;
44 
45  template<typename Type>
46  class Vec3;
47 
48  template<typename Type>
49  class Vec4;
50 
51  template<typename Type>
52  class Mat2;
53 
54  template<typename Type>
55  class Mat3;
56 
57  template<typename Type>
58  class Mat4;
59 
60  template<typename Type>
61  class Sizex;
62 
63  template<typename Type>
64  class Pointx;
65 
66  class Angle;
67 
73  template<typename Type>
74  class Vec4
75  {
76  public:
77  typedef Type datatype;
78 
79  union { Type x; Type s; Type r; };
80  union { Type y; Type t; Type g; };
81  union { Type z; Type u; Type b; };
82  union { Type w; Type v; Type a; };
83 
84  Vec4() : x(0), y(0), z(0), w(0) { }
85  explicit Vec4(const Type &scalar) : x(scalar), y(scalar), z(scalar), w(scalar) { }
86  explicit Vec4(const Vec2<Type> &copy, const Type &p3, const Type &p4) { x = copy.x; y = copy.y; z = p3; w = p4; }
87  explicit Vec4(const Vec2<Type> &copy, const Vec2<Type> &copy34) { x = copy.x; y = copy.y; z = copy34.x; w = copy34.y; }
88  explicit Vec4(const Vec3<Type> &copy, const Type &p4) { x = copy.x; y = copy.y; z = copy.z; w = p4; }
89  explicit Vec4(const Type &p1, const Type &p2, const Type &p3, const Type &p4) : x(p1), y(p2), z(p3), w(p4) { }
90  explicit Vec4(const Type &p1, const Type &p2, const Vec2<Type> &copy34) : x(p1), y(p2), z(copy34.x), w(copy34.y) { }
91  explicit Vec4(const Type *array_xyzw) : x(array_xyzw[0]), y(array_xyzw[1]), z(array_xyzw[2]), w(array_xyzw[3]) { }
92 
98  static Vec4<Type> normalize3(const Vec4<Type> &vector);
99 
105  static Vec4<Type> normalize4(const Vec4<Type> &vector);
106 
114  static Type dot3(const Vec4<Type>& vector1, const Vec4<Type>& vector2) { return vector1.x*vector2.x + vector1.y*vector2.y + vector1.z*vector2.z; }
115 
123  static Type dot4(const Vec4<Type>& vector1, const Vec4<Type>& vector2) { return vector1.x*vector2.x + vector1.y*vector2.y + vector1.z*vector2.z + vector1.w*vector2.w; }
124 
130  static Vec4<Type> cross3(const Vec4<Type>& vector1, const Vec4<Type>& vector2);
131 
141  static Vec4<Type> rotate3(const Vec4<Type>& vector, const Angle &angle, const Vec4<Type>& axis);
142 
149  static Vec4<Type> round(const Vec4<Type>& vector);
150 
156  static bool is_equal(const Vec4<Type> &first, const Vec4<Type> &second, Type epsilon)
157  {
158  Type diff_x = second.x - first.x; Type diff_y = second.y - first.y; Type diff_z = second.z - first.z; Type diff_w = second.w - first.w;
159  return (diff_x >= -epsilon && diff_x <= epsilon && diff_y >= -epsilon && diff_y <= epsilon && diff_z >= -epsilon && diff_z <= epsilon && diff_w >= -epsilon && diff_w <= epsilon);
160  }
161 
162  void set_xy(const Vec2<Type> &new_v) { x = new_v.x; y = new_v.y; }
163  void set_zw(const Vec2<Type> &new_v) { z = new_v.x; w = new_v.y; }
164 
170  Type length3() const;
171 
177  Type length4() const;
178 
184 
190 
197  Type dot3(const Vec4<Type>& vector) const { return x*vector.x + y*vector.y + z*vector.z; }
198 
205  Type dot4(const Vec4<Type>& vector) const { return x*vector.x + y*vector.y + z*vector.z + w*vector.w; }
206 
212  Angle angle3(const Vec4<Type>& vector) const;
213 
219  Type distance3(const Vec4<Type>& vector) const;
220 
226  Type distance4(const Vec4<Type>& vector) const;
227 
234  Vec4<Type> &cross3(const Vec4<Type>& vector);
235 
244  Vec4<Type> &rotate3(const Angle &angle, const Vec4<Type>& axis);
245 
251  Vec4<Type> &round();
252 
257  bool is_equal(const Vec4<Type> &other, Type epsilon) const { return Vec4<Type>::is_equal(*this, other, epsilon); }
258 
260  void operator += (const Vec4<Type>& vector) { x += vector.x; y += vector.y; z += vector.z; w += vector.w; }
261 
263  void operator += (Type value) { x += value; y += value; z += value; w += value; }
264 
266  void operator -= (const Vec4<Type>& vector) { x -= vector.x; y -= vector.y; z -= vector.z; w -= vector.w; }
267 
269  void operator -= (Type value) { x -= value; y -= value; z -= value; w -= value; }
270 
272  Vec4<Type> operator - () const { return Vec4<Type>(-x, -y, -z, -w); }
273 
275  void operator *= (const Vec4<Type>& vector) { x *= vector.x; y *= vector.y; z *= vector.z; w *= vector.w; }
276 
278  void operator *= (Type value) { x *= value; y *= value; z *= value; w *= value; }
279 
281  void operator /= (const Vec4<Type>& vector) { x /= vector.x; y /= vector.y; z /= vector.z; w /= vector.w; }
282 
284  void operator /= (Type value) { x /= value; y /= value; z /= value; w /= value; }
285 
287  Vec4<Type> &operator = (const Vec4<Type>& vector) { x = vector.x; y = vector.y; z = vector.z; w = vector.w; return *this; }
288 
290  bool operator == (const Vec4<Type>& vector) const { return ((x == vector.x) && (y == vector.y) && (z == vector.z) && (w == vector.w)); }
291 
293  bool operator != (const Vec4<Type>& vector) const { return ((x != vector.x) || (y != vector.y) || (z != vector.z) || (w != vector.w)); }
294 
296  bool operator < (const Vec4<Type>& vector) const { return w < vector.w || (w == vector.w && (z < vector.z || (z == vector.z && (y < vector.y || (y == vector.y && x < vector.x))))); }
297  };
298 
300  template<typename Type>
301  Vec4<Type> operator + (const Vec4<Type>& v1, const Vec4<Type>& v2) { return Vec4<Type>(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z, v1.w + v2.w); }
302 
304  template<typename Type>
305  Vec4<Type> operator + (Type s, const Vec4<Type>& v) { return Vec4<Type>(s + v.x, s + v.y, s + v.z, s + v.w); }
306 
308  template<typename Type>
309  Vec4<Type> operator + (const Vec4<Type>& v, Type s) { return Vec4<Type>(v.x + s, v.y + s, v.z + s, v.w + s); }
310 
312  template<typename Type>
313  Vec4<Type> operator - (const Vec4<Type>& v1, const Vec4<Type>& v2) { return Vec4<Type>(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z, v1.w - v2.w); }
314 
316  template<typename Type>
317  Vec4<Type> operator - (Type s, const Vec4<Type>& v) { return Vec4<Type>(s - v.x, s - v.y, s - v.z, s - v.w); }
318 
320  template<typename Type>
321  Vec4<Type> operator - (const Vec4<Type>& v, Type s) { return Vec4<Type>(v.x - s, v.y - s, v.z - s, v.w - s); }
322 
324  template<typename Type>
325  Vec4<Type> operator * (const Vec4<Type>& v1, const Vec4<Type>& v2) { return Vec4<Type>(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z, v1.w * v2.w); }
326 
328  template<typename Type>
329  Vec4<Type> operator * (Type s, const Vec4<Type>& v) { return Vec4<Type>(s * v.x, s * v.y, s * v.z, s * v.w); }
330 
332  template<typename Type>
333  Vec4<Type> operator * (const Vec4<Type>& v, Type s) { return Vec4<Type>(v.x * s, v.y * s, v.z * s, v.w * s); }
334 
336  template<typename Type>
337  Vec4<Type> operator / (const Vec4<Type>& v1, const Vec4<Type>& v2) { return Vec4<Type>(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z, v1.w / v2.w); }
338 
340  template<typename Type>
341  Vec4<Type> operator / (Type s, const Vec4<Type>& v) { return Vec4<Type>(s / v.x, s / v.y, s / v.z, s / v.w); }
342 
344  template<typename Type>
345  Vec4<Type> operator / (const Vec4<Type>& v, Type s) { return Vec4<Type>(v.x / s, v.y / s, v.z / s, v.w / s); }
346 
347  template<typename Type>
348  Vec4<Type> operator * (const Vec4<Type>& v, const Mat4<Type>& matrix)
349  {
350  return Vec4<Type>(
351  matrix[0 * 4 + 0] * v.x + matrix[0 * 4 + 1] * v.y + matrix[0 * 4 + 2] * v.z + matrix[0 * 4 + 3] * v.w,
352  matrix[1 * 4 + 0] * v.x + matrix[1 * 4 + 1] * v.y + matrix[1 * 4 + 2] * v.z + matrix[1 * 4 + 3] * v.w,
353  matrix[2 * 4 + 0] * v.x + matrix[2 * 4 + 1] * v.y + matrix[2 * 4 + 2] * v.z + matrix[2 * 4 + 3] * v.w,
354  matrix[3 * 4 + 0] * v.x + matrix[3 * 4 + 1] * v.y + matrix[3 * 4 + 2] * v.z + matrix[3 * 4 + 3] * v.w);
355  }
356 
357  template<typename Type>
358  Vec4<Type> operator * (const Mat4<Type>& matrix, const Vec4<Type>& v)
359  {
360  return Vec4<Type>(
361  matrix[0 * 4 + 0] * v.x + matrix[1 * 4 + 0] * v.y + matrix[2 * 4 + 0] * v.z + matrix[3 * 4 + 0] * v.w,
362  matrix[0 * 4 + 1] * v.x + matrix[1 * 4 + 1] * v.y + matrix[2 * 4 + 1] * v.z + matrix[3 * 4 + 1] * v.w,
363  matrix[0 * 4 + 2] * v.x + matrix[1 * 4 + 2] * v.y + matrix[2 * 4 + 2] * v.z + matrix[3 * 4 + 2] * v.w,
364  matrix[0 * 4 + 3] * v.x + matrix[1 * 4 + 3] * v.y + matrix[2 * 4 + 3] * v.z + matrix[3 * 4 + 3] * v.w);
365  }
366 
367  template<typename Type>
368  inline Type Vec4<Type>::length3() const { return (Type)floor(sqrt(float(x*x + y*y + z*z)) + 0.5f); }
369 
370  template<>
371  inline double Vec4<double>::length3() const { return sqrt(x*x + y*y + z*z); }
372 
373  template<>
374  inline float Vec4<float>::length3() const { return sqrt(x*x + y*y + z*z); }
375 
376  template<typename Type>
377  inline Type Vec4<Type>::length4() const { return (Type)floor(sqrt(float(x*x + y*y + z*z + w*w)) + 0.5f); }
378 
379  template<>
380  inline double Vec4<double>::length4() const { return sqrt(x*x + y*y + z*z + w*w); }
381 
382  template<>
383  inline float Vec4<float>::length4() const { return sqrt(x*x + y*y + z*z + w*w); }
384 
386  typedef Vec4<char> Vec4b;
390  typedef Vec4<int> Vec4i;
393 
395 }
Definition: clanapp.h:35
void operator*=(const Vec4< Type > &vector)
*= operator.
Definition: vec4.h:275
Vec4< Type > operator-() const
operator.
Definition: vec4.h:272
Angle class.
Definition: angle.h:59
Vec4< Type > & normalize4()
Normalizes this vector (taking into account the w ordinate)
4D vector
Definition: size.h:47
Vec4(const Type &p1, const Type &p2, const Vec2< Type > &copy34)
Definition: vec4.h:90
2D vector
Definition: line.h:46
Type b
Definition: vec4.h:81
Vec4(const Vec2< Type > &copy, const Vec2< Type > &copy34)
Definition: vec4.h:87
Type dot3(const Vec4< Type > &vector) const
Dot products this vector with an other vector (not taking into account the w ordinate).
Definition: vec4.h:197
static bool is_equal(const Vec4< Type > &first, const Vec4< Type > &second, Type epsilon)
Returns true if equal within the bounds of an epsilon.
Definition: vec4.h:156
Vec4< char > Vec4b
Definition: vec4.h:386
Type z
Definition: vec4.h:81
bool is_equal(const Vec4< Type > &other, Type epsilon) const
Returns true if equal within the bounds of an epsilon.
Definition: vec4.h:257
void set_zw(const Vec2< Type > &new_v)
Definition: vec4.h:163
static Vec4< Type > rotate3(const Vec4< Type > &vector, const Angle &angle, const Vec4< Type > &axis)
Rotate a vector around an axis. Same as glRotate[f|d](angle, a);.
*Type length3() const
Returns the length (magnitude) of this vector (not taking into account the w ordinate).
Definition: vec4.h:368
Vec4< unsigned short > Vec4us
Definition: vec4.h:387
Vec2< Type > operator/(const Vec2< Type > &v1, const Vec2< Type > &v2)
/ operator.
Definition: vec2.h:302
void operator+=(const Vec4< Type > &vector)
+= operator.
Definition: vec4.h:260
bool operator==(const Vec4< Type > &vector) const
== operator.
Definition: vec4.h:290
Type y
Definition: vec4.h:80
Vec4< Type > & round()
Rounds all components on this vector.
Type y
Definition: vec3.h:80
Type s
Definition: vec4.h:79
Type distance3(const Vec4< Type > &vector) const
Calculate the distance between this vector and an other vector (not taking into account the w ordinat...
Vec4< short > Vec4s
Definition: vec4.h:388
Type r
Definition: vec4.h:79
Type dot4(const Vec4< Type > &vector) const
Dot products this vector with an other vector (taking into account the w ordinate).
Definition: vec4.h:205
4D matrix
Definition: mat2.h:50
Vec2< Type > operator+(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:266
Type y
Definition: vec2.h:81
Type z
Definition: vec3.h:81
Type w
Definition: vec4.h:82
Type a
Definition: vec4.h:82
Vec4(const Type &scalar)
Definition: vec4.h:85
Vec4< Type > & operator=(const Vec4< Type > &vector)
= operator.
Definition: vec4.h:287
Type u
Definition: vec4.h:81
static Vec4< Type > cross3(const Vec4< Type > &vector1, const Vec4< Type > &vector2)
Calculate the cross product between two vectors (not taking into account the w ordinate).
Type distance4(const Vec4< Type > &vector) const
Calculate the distance between this vector and an other vector (taking into account the w ordinate)...
Type g
Definition: vec4.h:80
Vec4(const Vec2< Type > &copy, const Type &p3, const Type &p4)
Definition: vec4.h:86
Vec4< unsigned int > Vec4ui
Definition: vec4.h:389
Vec4(const Type *array_xyzw)
Definition: vec4.h:91
Vec2< Type > operator*(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:290
*Type length4() const
Returns the length (magnitude) of this vector (taking into account the w ordinate).
Definition: vec4.h:377
static Type dot4(const Vec4< Type > &vector1, const Vec4< Type > &vector2)
Dot products between two vectors (taking into account the w ordinate).
Definition: vec4.h:123
bool operator!=(const Vec4< Type > &vector) const
!= operator.
Definition: vec4.h:293
Vec4(const Type &p1, const Type &p2, const Type &p3, const Type &p4)
Definition: vec4.h:89
void set_xy(const Vec2< Type > &new_v)
Definition: vec4.h:162
Type x
Definition: vec3.h:79
Vec4()
Definition: vec4.h:84
Type datatype
Definition: vec4.h:77
Vec4< unsigned char > Vec4ub
Definition: vec4.h:385
Vec4< double > Vec4d
Definition: vec4.h:392
Type x
Definition: vec4.h:79
void operator/=(const Vec4< Type > &vector)
/= operator.
Definition: vec4.h:281
Type x
Definition: vec2.h:80
void operator-=(const Vec4< Type > &vector)
-= operator.
Definition: vec4.h:266
Type t
Definition: vec4.h:80
Vec2< Type > operator-(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:278
3D vector
Definition: line_ray.h:46
Vec4< Type > & normalize3()
Normalizes this vector (not taking into account the w ordinate)
Vec4< float > Vec4f
Definition: vec4.h:391
Vec4< int > Vec4i
Definition: vec4.h:390
Angle angle3(const Vec4< Type > &vector) const
Calculate the angle between this vector and an other vector (not taking into account the w ordinate)...
Type v
Definition: vec4.h:82
static Type dot3(const Vec4< Type > &vector1, const Vec4< Type > &vector2)
Dot products between two vectors (not taking into account the w ordinate).
Definition: vec4.h:114
Vec4(const Vec3< Type > &copy, const Type &p4)
Definition: vec4.h:88